

Robocon 2014

Indian Institute of Technology Kanpur

Project Coordinators: Abhishek Sharma [11030] Dhrupal R Shah [11250] Project Guide: **Prof Bhaskar Dasgupta** Head, Mechatronics Lab Mechanical Engineering, IIT Kanpur

Problem Statement: Robocon 2014

ABU Asia-Pacific Robot Contest 2014 Pune, INDIA

A SALUTE TO PARENTHOOD

Parent Robot: Objective

- Manoeuvring in a large arena from one zone to another zone
- Picking and placing child robot in different orientations and locations in these zones
- Pushing a swing with child robot
- Pushing a see-saw with child robot on one side

Child Robot: Objective

• Autonomously traversing from one pole to another in a pole walk zone arranged with poles arranged in a specific orientation

Parent Robot: The Challenge

- Dimensions: should fit in a 1000mm cube before start and in a cube of 1500mm cube after start
- Locomotion: actuators + wheels
- Gripping child robot
- Design: degrees of freedom, swing pushing, see saw pushing
- Control System

Child Robot: The Challenge

- Dimensions: should fit in a 500mm cube
- Gripping poles, sustaining weight
- Design: degrees of freedom, mechanisms
- Interaction with Parent Robot
- Gripping by Parent Robot
- Control System
- Programming

Brain Storming and Designing

Parent robot: Tackling challenges

Parent Robot: Locomotion

Parent Robot: Motors

Worm Geared Permanent Magnet DC Motor

- High Torque
- High no load current
- Low RPMs
- Too heavy
- Moderate cost
- Easily available in India

Brushless DC Motor

- High Torque
- Nominal no load current
- Desirable RPMs
- Very light
- Very expensive
- Manufactured outside India

Spur Geared Permanent Magnet DC Motor

- High Torque
- Nominal no load current
- Desirable RPMs
- Moderate weight
- Moderate cost
- Easily available in India

Parent Robot: Drive

2 Wheel Drive+ Castor Wheels

- Nominal power consumption
- Cheapest option
- Worst maneuverability

4 Wheel Drive: Mecannum Wheels

- About 3 times more power consumption
- Costliest option
- Good maneuverability

4 Wheel Drive: Omni Wheels

- Power consumption nearly same as 2WD with castors
- Nominal cost
- Best maneuverability

Parent Robot: Gripper

Parent Robot: Design Requirements

Parent Robot: Design Requirements

TASKS	HEIGHT(mm)	EXTENTION(mm)	ORIENTATION FROM VERTICAL A	XIS
SEASAW	170	380	90	
DURING PLAY	560	380	90	
SWING	400	700	90	
POLE WALKING	300	350	0	

Table 1.1: Design requirements to be fulfilled by the bot

Parent Robot: Design Requirements

- See saw pushing:
 - Planned to use pneumatic actuators
 - Orientation? Mechanism?
- Swing pushing:
 - Planned to use pneumatic actuators
 - Force? Stroke length?

Parent Robot: Design

Parent Robot: Control System

CHILD ROBOT: TACKLING CHALLENGES

Child Robot: Gripper

Child Robot: Gripper Calculations

Serial No.	Link Lengths (mm)		Angles (32mm)		Angles (50mm)		Force Constant (32mm)		Force Constant (50mm)	
	Pneumatic	Pneumatic2Claw	θ	θ+φ	θ	θ+φ	Theo	Ехр	Theo	Ехр
1	30	30					Not Possible			
2	30	40					Not Possible			
3	30	50	19.2	39.9	41.6	96.6	1.95		1.50	
4	30	60	38.1	58.8	51.4	106.3	1.39		1.23	
5	40	30					Not Possible			
6	40	40					Not Possible			
7	40	50	32.4	53.2	49.6	104.5	1.49		1.27	
8	40	60	45.3	66	57.3	112.3	1.29		1.10	
9	50	30					Not Possible			
10	50	40					Not Possible			
11	50	50	41.9	62.6	56.8	111.6	1.33		1.11	
12	50	60	51.7	72.5	62.9	117.9	1.22		0.99	

Force Constant=
$$\frac{\sin(\theta + \phi)}{\sin \theta}$$

T=n_T.= $\frac{n_e Frsin(\theta + \phi)}{2sin \theta}$

Child Robot: Gripper in Action

Figure: Gripper Version 1- Load testing

Load = 3.9 Kg Minimum pressure at piston = 40 Psi

Child Robot: Gripper Module

Child Robot: Design

Child Robot: Control System

Child Robot: Programming

Child Robot: Pole Searching

Gripper comes in position 1: Pole is outside the Ultrasonic sensor range

- Possible initial starting points.
- Minimum distance orientation.

Fabrication and Development

PARENT ROBOT

Parent Robot: Locomotion

Parent Robot: Gripper

Parent Robot: See Saw & Swing Task

Swing Pushing Mechanism

See saw pushing mechanism

Parent Robot: Reality vs Design

Parent Robot: Electronics

Pneumatics Control

CHILD ROBOT

Child Robot: Gripper Module

Child Robot: Design

Results and Our Performance

Parent Robot: Sea-Saw

Parent Robot: Swing

Parent Robot: Pole Walk

Parent Robot: Pole Walk

The Game

Best Innovative Design Award

Thank You

