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Abstract
A multi-agent system comprises of multiple interacting intelligent agents, collab-

orating together to solve problems that are difficult or impossible for a single agent
to solve, with the goal of maximising their shared utility. We study the emergence
of cooperative behavior and communication protocols in multi-agent teams, for col-
laboratively accomplishing tasks like resource allocation and formation control for
swarms. While multi-agent interactions can be naturally modeled as graphs, the en-
vironment has traditionally been considered as a black box. We propose creating
a shared agent-entity graph, where agents and environmental entities form vertices,
and edges exist between the vertices allowed to communicate with each other, al-
lowing agents to selectively attend to different parts of the environment, while also
introducing invariance to the number of agents/entities as well as permutation in-
variance, desirable properties for any multi-agent system representation. We present
state-of-the-art results on coverage and formation control for swarms in a fully de-
centralized execution framework, and show that the learned policies have strong
zero-shot generalization to scenarios with different team sizes. Additionally, we in-
troduce communication dropout for robustness to glitches, and find that it also aids
learning as a regularizer. This is an important step towards swarms which can be
realistically deployed in the real world without assuming complete prior knowledge
or instantaneous communication at unbounded distances.
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Chapter 1

Introduction

A multi-agent system can be defined as a loosely-coupled network of agents that interact with
each other to collaboratively solve problems or accomplish tasks that are beyond the individual
capacities of each agent. Cooperative multi-agent systems find a lot of applications in domains as
varied as robotics, distributed control, telecommunications, resource management, decision sup-
port systems, economics, operations research etc. The complexity of these tasks often preclude
them from being solved with pre-programmed agent behaviors in many dimensions, including
but not limited to, inability to craft good heuristics which implement desired behavior, and in-
ability to faithfully model the dynamic and stochastic operational environment.

A reinforcement learning (RL) agent [36] learns by interacting with its environment, receiv-
ing a reward or penalty for its actions, and accordingly shaping its behavior, over many such
interactions, to maximize the reward it receives. While deep reinforcement learning techniques
have contributed to huge successes in recent years [20, 32], multi-agent RL poses an entirely
new set of challenges. From the perspective of any one agent, the other agents which are also
learning make the environment non-stationary, which in turn requires the agent to adapt its own
evolving behavior to theirs, leading to a reward only if all the agents’ behaviors converge to
produce a meaningful interaction. At the same time, both the joint action and state space of the
agents grow linearly (or even combinatorially) in the number of agents, making it difficult for
single-agent RL to scale up to a large number of agents. Hence, we require the agents to learn
cooperative behavior conditioned only on local observation and communication, where locality
could be defined as physical vicinity or other metrics as appropriate, but imposing a constraint
on how many agents each agent observes at each time step. This argument is strengthened by
the fact that most real world environments will have partial observability (due to limited range
and/or noisy sensors) and limited communication (due to latency, finite bandwidth, lost packets),
necessitating the use of decentralised policies. Focusing on fully cooperative settings also lets
us avoid the thorny (and, we believe, orthogonal) issue of choosing an appropriate opponent to
learn and evaluate against in competitive (zero-sum) or general settings.

Recent work on multi-agent deep RL in fully cooperative settings [21, 34, 37] has led to some
success in learning cooperative behaviors in simple tasks with two or three agents. Building upon
this, Foerster et al. [6], Lowe et al. [17] demonstrated emergence of intelligent behavior with
up to 3 agents in a paradigm of centralized training and decentralized execution, where agents
have access to global information during training but do not need the same for execution. This
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approach was scaled up by Foerster et al. [7], Rashid et al. [27] who showed results with up to 8
agents micromanaging units in StarCraft. Though some of these approaches have modeled multi-
agent systems as interaction networks, the environment has traditionally been treated as a black
box, with agents still receiving information about all the entities in the environment as a single
vector, which is a gross under-utilization of the natural structure present in our environments.
For example, an agent might want to focus on obstacles close to it, or landmarks salient to
its objective, and an environment representation which provides this flexibility gives a strong
inductive bias to the multi-agent learning problem. Additionally, to the best of our knowledge,
there has been no study of how well the learned policies generalize and extrapolate to addition or
deletion of team members, when such situations have not been seen previously during training.

Hence, in this thesis we propose incorporating this environmental information directly in the
learning framework and creating a shared agent-entity graph, making learning more controlled
and effective. This approach to multi-agent reinforcement learning capitalizes on the network
structure inherent in these domains, and provides a strong inductive bias to the agents’ policy,
enabling them to learn robust cooperative behavior with large teams. We represent each agent and
environmental entity as a node in a graph, with edges between the nodes whose agents/entities
can communicate with each other. We then run a convolution operation over this graph [8, 13,
29], which allows us to model multi-agent interactions naturally, and we take the results of this
network and feed it into standard feedforward/recurrent policy and value networks for each agent.
This shared agent-entity graph, along with suitable message passing functions allow us to set up
our learning framework such that it is completely invariant to the number of agents or entities
in the environment and can easily generalize and extrapolate learned behavior. Our method
works under partial observability, and we present results for both centralized and decentralized
communication, setting state-of-the-art results in both settings. To the best of our knowledge, this
is the first work to demonstrate emergence of cooperative behavior without assuming availability
of full observability and/or global knowledge during training. The agents learn to communicate
with each other, learning both what to send as well as how much attention to pay to the messages
they receive from their neighbors, with the use of multi-head attention [39]. Finally, we present
results on strong zero-shot generalization of learned policies to environments with additional
team members, which is then fine-tuned very quickly to further improve performance to the
limit.
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Chapter 2

Preliminaries

In this chapter we introduce preliminary concepts required to understand this thesis, and expose
related prior work to put our work in context.

2.1 Reinforcement Learning

2.1.1 Markov Decision Processes

In the real world, an agent’s actions influence not just the immediate rewards it receives, but also
the subsequent state of the environment, which in turn influences future rewards. This kind of
sequential decision-making process is often formalized as a Markov Decision Process (MDP).
An MDP is defined by a tuple (S,A, P, r, p0, γ) where S is a finite set of states, A is a finite set
of actions, P : S × A × S → R is the state transition probability distribution, r : S → R is the
reward function, p0 : S → R is the probability distribution over the agent’s initial state s0, and
γ is the discount factor which determines how much the agent values immediate rewards over
future rewards. The name derives from the Markov property, which describes processes whose
future state depends only on the present state, not on the sequence of events that preceded it. This
can be formalized as p(st+1|st, at, · · · , s0, a0) = p(st+1|st, at)

The policy is a probability distribution from states to actions π : S × A → [0, 1] which
encodes the agent’s probability of taking each action in each state. Under policy π, the state
value function Vπ : S → R, action-value function Qπ : S × A → R and advantage function
Aπ(st, at) are defined as:

Qπ(st, at) = Est+1,at+1,···

∞∑
k=0

γkr(st+k)

Vπ(st) = Eat,st+1,at+1,···

∞∑
k=0

γkr(st+k)

Aπ(st, at) = Qπ(st, at)− Vπ(st)

where at ∼ π(a|st), st+1 ∼ p(st+1|st, at), and the subscripts t, t+ 1 etc. refer to time.
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Figure 2.1: The classic reinforcement learning ”Observation - Action - Reward” loop. An agent
observes its environment and uses this information to act appropriately upon the environment,
which in turn transitions to a new state and rewards or penalizes the agent based on the objective
at hand. The agent learns to choose its actions such that the long-term discounted reward it
receives is maximized.

2.1.2 Policy Gradient methods for learning in MDPs

An agent’s objective is to maximize the expected total discounted reward
∑∞

k=0 γ
kr(st+k). Let

the policy π be parameterized by θ. Policy gradient methods [42] usually optimize this by es-
timating the gradient g = ∇θE

∑∞
k=0 γ

kr(st+k). This has multiple formulations which tradeoff
bias and variance in the resulting gradient estimate, however for the purpose of this thesis we
will use the following:

ĝ = Ê
∞∑
t=0

Âπ,γ(st, at)∇θ log πθ(at|st)

where Â is an estimate of the advantage function, using the Generalized Advantage Estimator
(GAE) [30], and Ê denotes the empirical average over a finite batch of samples.

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l (2.1)

δVt = rt + γV (st+1)− V (st) (2.2)

where γ is the discount factor, and λ is a hyperparameter which contributes to the bias-variance
tradeoff. Note that the agent needs to maintain an estimate of the value function V , along with
its estimate of the policy π, in order to use this formulation of the policy gradient method.

To improve stability and robustness to hyperparameter settings, we use the PPO algorithm
[31] which optimizes a clipped, surrogate policy gradient objective function. This algorithm has
subsequently been used in many works [1, 25] for its stability and robustness to hyperparameter
settings.
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LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(2.3)

rt(θ) =
πθ (at|st)
πθold (at|st)

(2.4)

where θold is the vector of policy parameters before the update. The second term inside the min
removes the incentive for moving rt outside of the interval [1 − ε, 1 + ε], preventing potentially
harmful major updates to the policy and lending to stability of training. We also add a MSE (L-2)
loss function for the value estimate, and add an entropy bonus to encourage exploration. This
leads to the final objective function for PPO:

L := LCLIP+V F+S
t (θ) = Êt

[
LCLIPt (θ)− c1LV Ft (θ) + c2S [πθ] (st)

]
(2.5)

where c1, c2 are coefficients, S denotes the entropy bonus, and LV Ft is a squared error loss(
Vθ (st)− V targ

t

)2
. For completeness, we present the PPO algorithm from Schulman et al. [31].

Algorithm 1 Proximal Policy Optimization (PPO)
1: Initialize πθ, Vθ
2: for iter = 1, 2, · · · do
3: Run policy πθold in N parallel environments for T timesteps.
4: Compute GAE advantage estimates Â for each timestep in each environment.
5: for k = 1, · · · , K do
6: Construct L using Eqn. 2.5 and optimize wrt θ, with minibatch size M ≤ NT .
7: θold ← θ

2.1.3 Markov Games

The standard single-agent RL setting assumes that a single agent acts on the environment, and
has to, by definition, treat other agents as part of the environment. Instead, we model multi-
agent environments as Markov (or stochastic) games, which are a generalization of MDPs to the
multi-agent setting first proposed by Littman [16]. We note that in the fully cooperative case,
this formulation is consistent with the decentralized partially observable MDPs (Dec-POMDP)
formulation Oliehoek et al. [23].

Defined by a tuple (S,A, P, r, γ,N,Z, O) where N is the number of agents, S is the set of
states, P : S × A × S → [0, 1] is the state transition probability function. At each time step,
each agent chooses an action ai ∈ A, to create a joint action a ∈ An, and receives an immediate
reward from the environment ri(s, a) : S ×A→ R, along with an observation zi ∈ Z according
to observation functionO(s, a) : S×A→ Z. Each agent’s policy πi is conditioned on its history
of observations and actions, hi ∈ H ∈ (Z ×A). We consider fully cooperative games, where all
agents share the same reward function and discount factor.
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2.2 Related Work in Multi-Agent RL
Following the success of deep RL in single-agent domains [20, 32], there has been a resurgence
in multi-agent RL led by the use of deep neural networks to parameterize agent policies or value
functions, allowing methods to tackle high-dimensional state and action spaces. Having looked at
single-agent RL in the previous section, we now discuss various formulations of the multi-agent
reinforcement learning problem.

2.2.1 Centralized Multi-Agent RL

Figure 2.2: Multi-Agent Reinforcement Learning with a Hive Mind (centralized controller)

Centralized multi-agent RL (see Figure 2.2) is the simplest, most obvious interpretation of
multi-agent RL. There is a centralized controller, or a hive mind, which receives information
from all the agents in the system, and then takes a collective decision about what action each
agent should take. Being able to consider a wide variety of information from all the agents and
then order each agent around makes this very powerful. It can be thought of as a single-agent
system with multiple arms that it can directly control, the same way we have full control over our
own two arms. Hence, from a learning perspective, this is effectively single-agent reinforcement
learning. The recent paper on AlphaStar by DeepMind [40] which has demonstrated superhuman
performance on the challenging multi-agent game of StarCraft treats the problem in such a fully
centralized manner. It is worthwhile to note that such a centralized approach is hard to scale
to many agents, since the observation and action spaces grow combinatorially, leading to an
explosion of the policy search space, meaning that converging to a good policy becomes very
difficult, and computationally expensive, often out of reach for academic research labs. Another
disadvantage of such a system is that it has a single point of failure. Any event impacting the
central controller’s ability to command the agents renders all the agents useless. This fragility is
obviously undesirable.
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2.2.2 Decentralized Multi-Agent RL

Figure 2.3: Fully decentralized multi-agent reinforcement learning - each agent is an independent
decision making entity, relying solely on its own observation Oi to choose an action Ai.

To mitigate these drawbacks, we consider a decentralized setting now, where each agent
is its own decision making entity, which receives its own observation from the environment and
chooses to act solely on this observation. The observation received by each agent usually consists
of information within a certain observability radius of the agent. If there are other agents within
that radius, they can observe each other. The benefits of this approach include the absence of
a single point of failure, which means that even if anything happens to one agent - the rest can
carry on. Decentralization also makes scaling (up to larger teams) easier, since each agent is only
observing its local area.

There has been a lot of work in this problem setting, which we now discuss. Independent
Q-learning [37, 38] requires training independent Q-value functions for each agent using regular
Q-learning [41], while assuming that the other agents are a part of the environment. Since the
other agents are also learning, the environment becomes non-stationary and the resulting insta-
bility has prevented these methods from working with more than 2 agents in simple settings.
Other works like [19, 24] present a formalization of multi-agent decentralized RL under partial
observability and also address learning stabilisation, and present results on normal form games
or predator-prey games with up to 3 agents. However, these methods do not scale to a larger
number of agents. Under the paradigm of centralised learning with decentralised execution, a
multitude of recent works have trained actor-critic algorithms where the critic is centralized and
makes use of global information during training, allowing the agents to use only the actor net-
work to execute in a fully decentralized manner. MADDPG [17] learns a centralised critic for
each agent by providing the actions of all agents to the critics, and train different policies for each
agent using the DDPG algorithm. They present results in cooperative and competitive environ-
ments with up to 3 agents, and we compare our results with this algorithm in Section 4. COMA
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[7] also uses a centralised critic but estimates a counterfactual advantage function that helps with
multi-agent credit assignment by isolating the effect of each agent’s action. They present results
with up to 5 agents in Starcraft unit micromanagement tasks. These fully centralized critics be-
comes impractical as we increase the number of agents. VDN [35] counter this by decomposing
a centralized state-action value function into a sum of individual agent specific functions and
present results on 2-agent grid world environments. The decomposition introduced imposes a
strict prior which is not well justified, and limits the complexity of the agents’ learned value
functions. Q-Mix [27] improves upon this by removing the requirement of additive decompo-
sition of the centralised critic, instead imposing a less restrictive monotonicity requirement on
agents’ individual state-action value functions, and allowing a learnable mixing of the individual
functions which does not limit the complexity of functions that could be learned. This paper also
presents results with up to 8 agents in a variety of StarCraft unit micromanagement tasks. To the
best of our knowledge, all these works using a centralized critic use network architectures which
prevent any transfer of learned behavior to environments with greater or fewer number of team
members. These papers do not study robustness of learned behavior to addition or deletion of
team members, or, more broadly, generalization via extrapolation to any domain not seen during
training.

A significant drawback of this approach is that the agents cant actually coordinate with each
other during execution - they depend myopically on their own observations. If the agents en-
counter a situation never before seen during training, there is no mechanism which allows them
to adapt to that.

2.2.3 Decentralized Multi-Agent RL with Communication
To ameliorate this significant weakness, we can allow the agents to start communicating with
each other, along the red arrows between the agents. This communication is usually learned,
and could consist of symbols from a discrete vocabulary or, of vectors of real numbers. While
the agents still observe local information, they are able to communicate with each other during
execution, which provides a mechanism for them to adapt to scenarios never seen before during
training. This communication is often restricted, either due to bandwidth considerations, or to be
within a certain radial distance only.

CommNet [34] is one of the earliest works to learn a differentiable communication protocol
between multiple agents in a fully cooperative setting, and presented results on interesting coop-
erative tasks like a traffic junction, however they work with a fully centralized communication
architecture and full observability. The paper does not explicitly model interactions between
agents, instead each agent receives the averaged states of all its neighbors. VAIN [9] remedied
this by using an exponential kernel based attention to weigh the other agents’ states, and effec-
tively demonstrated predictive modeling of multi-agent systems using supervised learning. Mor-
datch and Abbeel [21] also demonstrated emergence of compositional language in multi-agent
systems with up to 3 agents in both cooperative and competitive settings, and released a multi-
agent particle environment which we make use of in this work. They, however, learned discrete
communication using symbols from a limited vocabulary, and made it end-to-end differentiable
by using the Gumbel-softmax estimator in a fully centralized approach. ATOC [10] proposes an
attentional communication model that learns when communication is needed and dynamically
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Figure 2.4: Decentralized multi-agent reinforcement learning, where the agents are allowed to
communicate with each other. Agent i receives observation Oi, communicates with other agents
and gathers information M , and then chooses an action Ai.

creates cliques which can communicate among each other using a bidirectional LSTM unit as
the channel.

In work done concurrently to ours, TarMAC [5] uses a scaled dot-product attention mecha-
nism for inter-agent communication, and present results in a 3D indoor navigation task. They
do not impose any restrictions on communication, leading to a centralized execution paradigm.
DGN [11] also uses a similar mechanism for inter-agent communication, using Q-learning for
training. They restrict each agent to communicate with its 3 closest neighbors. From a practical
consideration, communication between agents is usually restricted by distance, meaning that an
agent can communicate only with neighbors within a certain radius. For example, this is the
standard practice in the swarm robotics community. We would also like to emphasize that be-
ing able to communicate with the 3 closest neighbors ensures that the agents’ graph is always
a single connected component and no agent is ever disconnected from the others, while having
a distance-based restriction leads to formation of several different connected components in the
agents’ graph, none of which can communicate with each other - leading to a significantly more
difficult learning (to cooperate) problem.
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Chapter 3

Methods

Figure 3.1: The proposed shared agent-entity graph on the right, and a detailed look at the
internal architecture of each agent on the left. Agents are in green, environmental entities in blue.
Messages are exchanged between agents along the red edges, and are sent from entities to agents
along the blue edges. Many agent pairs (< 1, 3 >,< 1, 4 >,< 2, 4 >) do not communicate
directly, however information from one agent is still able to propagate to others due to the use of
multihop communication. The agent state encoder is described in Section 3.3.1, communications
in Section 3.2 and policy/value heads in Section 3.3.2.

There are N agents interacting and jointly performing a task, sharing a policy parameterized
by π. Agent i encodes its own state (consisting of information like position, velocity etc.) into
a H-dim vector, and combines it with information about environmental entities (like landmarks,
obstacles etc.) to form an agent embedding Hi. The agents then communicate with their neigh-
bors to update their embeddings with the received messages. This is the crucial step which allows
the emergence of coherent cooperative behavior in the team. Finally, this updated state is fed to
an actor-critic network, whose policy network is used by the agent to choose an action for the en-
vironment. The agents then act simultaneously on the environment, and receive a reward which
is used to train, in an end-to-end fashion, the entire network architecture, using reinforcement
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Figure 3.2: Agents and entities embedded in a shared graph, with the agents acting upon and
receiving a reward from the environment. This figure should be compared to those in Section
2.2.

learning. In this work, we consider scenarios where all the agents form a homogeneous team
and share policy and value network parameters. Since each agent receives different observations
(their own state), sharing parameters does not preclude them from behaving differently, as is
appropriate.

Figure 3.1 provides a high-level overview of the proposed multi-agent learning framework,
with the shared agent-entity graph on the right and the internal architecture of each agent on the
left. We now describe each part in detail.

3.1 Agent-Entity Graph

The salient parts of our environment can often be described as a collection of different entities.
For a vehicle, this might include traffic lights, pedestrians or obstacles on the road. Any coop-
erative multi-agent system will also have M agents sharing the environment, who collectively
need to accomplish a given objective. We would like each agent to be able to learn to focus
selectively on particular entities salient to it (such as obstacles close to it, or objects which align
with its goal). Hence, we let the agents receive messages from each entity, where the agent can
use attention to selectively focus on all the messages it is receiving.

Hence, we define a graph G := (V,E) where each node n ∈ V is an agent or an environ-
ment entity, and there exists an edge e ∈ E between two nodes if the agents or entities on those
nodes communicate with each other. This can be seen in Figure 3.1. A shared agent-entity graph
has these agents and entities occupying vertices of the graph, with edges existing between those
vertices whose occupants can communicate with each other. In a real world scenario, commu-
nication is often restricted to within a certain radial distance only, as illustrated in Fig. 3.3. In
the case there is no restriction on communication radius, this graph is fully connected, whereas
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Figure 3.3: Illustration of restricted communication. The circles around each agent indicate its
radius of communicationR. Note that the yellow agent is disconnected from the rest of the graph,
creating multiple disconnected components which can not communicate with one another. This
is a situation encountered frequently in reality and the learned behavior needs to be robust to
such situations.

in the case that communication is restricted to neighbors (agents within the communication ra-
dius of each agent), the graph can have arbitrary connectivity, including multiple disconnected
components. Modeling the agent network as a graph provides a very strong inductive bias to the
learning algorithm. In practice, agents which are closer to each other have a greater impact on
each others’ behavior, and this crucial information is baked into the architecture of the graph,
which greatly aids learning. Using appropriate message-passing functions in the graph (as dis-
cussed below) also enables the learned policies to work in environments with a different number
of agents, which is necessary for enabling the agents to learn robust and generalizable strategies.
We now discuss what messages are sent and received between vertices on this graph, and how
they use that information to make a decision.

3.2 Learning Communication

Communication between agents is crucial for emergence of cooperative behavior. While there
has been prior work [2] on goal-oriented communication between two agents grounded in natural
language, our focus here is to allow groups of agents to develop a communication protocol, and
we do not impose the constraint of natural language grounding.
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Figure 3.4: Illustration of communication between agents and/or entities, using dot-product at-
tention and multihop routing.

Calculating a message to send

All nodes n in the graph (agents and entities) compute a message vtn to send, conditioned on their
state htn:

vtn = WV h
t
n ∈ RDV

where WV ∈ RDV ×H is a learnable matrix.

Aggregating received messages

Only agents receive messages. Agent m receives multiple messages from its neighbors in the
graph and aggregates them using a weighted linear combination:

M t
m =

∑
n

(
exp (wtmn)∑
n exp (wtmn)

)
vtn

where n indexes over all agents (including m), and the softmax normalization of the weights
wtmn is done to ensure invariance to the number of agents. We now discuss how these weights
are calculated.

Calculation of attention weights wtmn

We use the dot-product multi-head attention mechanism proposed by Vaswani et al. [39] to calcu-
late the weight (or attention) that each agent assigns to each message received by it. This weight
is a function of the internal state of the agent sending the message and the agent receiving the
message. This provides us with two benefits: (1) allows each agent to learn to selectively attend
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to entities that are more relevant to it, and (2) ensures invariance and robustness to number of
entities in the environment, since the softmax operation in the attention calculation normalizes
over the number of agents or entities.

More specifically, for each vertex in the graph, we calculate a key-value pair < ktn, v
t
n >

where

ktn = WAE
K etn ∈ RDK

vtn = WAE
V etn ∈ RDV

where WAE
K ∈ RDK×H and WAE

V ∈ RDV ×H . Each agent vertex m also calculates a query vector
qtm = WAE

Q atm ∈ RDK , where WAE
Q ∈ RDK×H and atm is the state of the vertex at time t.

Intuitively, WAE
K and WAE

Q are learnable matrices which embed the states of the two agents (or
entity-agent pair) sending and receiving the message, respectively, into a shared embedding space
where we can use the dot-product between the two embeddings (key and query, respectively) to
compute their similarity. WAE

V is also a learnable matrix which computes a message (value) to
be sent from vertex n to the vertices it is connected to (able to communicate with).

wtmn =


(
qtmk

tT
n√

DK

)
if m and n are connected

−∞ otherwise

where the scaling factor 1√
DK

is added for stability [39] and j indexes over all the agents or
entities in the environment. This computation is also depicted in Figure 3.4.

We note that our shared agent-entity graph is also compatible with two previously proposed
functions for inter-agent communication, which we specify below for completeness:
Exponential Kernel Attention (VAIN [9]): Each agent computes a key value ktn ∈ R1:

ktn = WKh
t
n ∈ R1

We then calculate the L2 distance between the key values of agentsm and n to use as the attention
weight wtmn:

wtmn =

{
−||km − kn||2 if m and n are connected
−∞ otherwise

Uniform Attention (CommNet [34]): The agent focuses uniformly on all the messages it
receives, i.e.

wtmn =

{
1 if m and n are connected
−∞ otherwise

Agent State Update

The aggregated message M t
m is now passed through the agent update function g, which takes as

input the concatenation of the current agent state htm and the aggregated message, to update the
agent state.

htm ← g(htm|M t
m)

where | denotes concatenation. We emphasize that the matrices WK ,WQ,WV and function g are
shared (have the same value) across all agents.
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Figure 3.5: An illustration of information propagation through multi-hop communication. In
the first step, the central node has some information (green) which it has to propagate to the
other nodes in the graph. In this step, the edges connected directly to the green node carry this
information. In the second step, we see that the nodes directly connected to the central node have
received this information (have turned green), and now all the edges connected to any green node
carry this information. In the third step, we see that nodes which are not directly connected to
the central node have also received the information (turned green). This is the basic premise
of multi-hop communication, where information can pass between nodes that are not directly
connected to each other.

Multi-Hop Communication

Since the agent graph is sparsely connected, we use multihop (or peer-to-peer) communication
to allow information to propagate between agents that might not be directly connected with each
other. At each timestep t, the message passing algorithm outlined above is repeated C times,
after which the hidden state of each agent (potentially) incorporates information from agents up
to C hops away. The premise of multi-hop communication is explained in Figure 3.5

3.3 Internal Agent Architecture

3.3.1 Agent State Encoder

At each timestep t, agent i observes its local state xti ∈ RDI , which consists of information like
its own position and velocity, and provides it as input to the agent state encoder q : RDI → RH ,
to produce an embedding ati ∈ RH .

ati = q(xti)

3.3.2 Policy and Value Output Heads

As discussed in Section 2.1.2, actor-critic reinforcement learning algorithms require the agent to
produce (1) a probability distribution over actions, and (2) a value estimate of the current state.
Hence, each agent is equipped with a policy network and a value network. These networks both
take as input the agent state hti obtained after C rounds of communication with the other agents.
This input contains information about other agents’ expected behavior which is crucial for cor-
rect estimation of value and producing a policy distribution which leads to a high probability of
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coherent and cooperative behavior. While each agent’s policy and value network can be indepen-
dent in a scenario where each agent is unique and heterogeneous, a more likely scenario is that
agents have specific roles, for e.g., medic, firefighter and police (in a fire response scenario), and
all the agents in a particular role share policy and value networks, since they would be expected
to behave interchangeably, which desirable behavior results directly from sharing parameters. In
this document, we consider only scenarios where all the agents involved are homogeneous, and
hence share policy and value network parameters. Since each agent receives different observa-
tions (their own state), sharing parameters does not preclude them from behaving differently, as
is appropriate.

3.4 Training

3.4.1 Multi-Agent PPO

We adapt the Proximal Policy Optimization (PPO) [31] actor-critic algorithm for multiple agents.
During training, we collect the following data from all agents at each timestep:

1. Local state and environment observation

2. Action taken

3. Log probability value of the policy head for the action chosen

4. Reward received from the environment

5. The agent’s value estimate for that state

6. Did the episode end? (True/False)
The reward and value estimates are later used to calculate returns and advantage estimates for
each agent, using Generalized Advantage Estimation [30], as described in Section 2.1.2. Then,
we sample a mini-batch of the collected data for the same time steps for all agents, and use that
to do a gradient update. Since PPO updates are stable, we are able to use the same experience
for multiple updates, improving sample efficiency.

3.4.2 Dropout Communication

Real world communication networks are prone to glitches, with lost or corrupted information
packets being a regular occurrence. Usually, these dropped connections are not just momentary
but do persist for a short duration of time.

To operate robustly in the real world, agents have to learn to not be too dependent on con-
tinuous communication with their neighbors. We induce this behavior by exposing them to
artificially severed communications during training. A fraction p of edges in the agent graph are
dropped at each timestep, with the particular edges to be dropped being randomly sampled every
K timesteps. This technique also draws inspiration from the dropout technique [33] used to re-
duce overfitting and co-adaptation between neurons in deep neural networks, since our objective
is also to reduce co-dependence between agents in the agent graph.
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3.4.3 Curriculum Training
We make use of curriculum learning [4] to train policies in progressively tougher environments
as the number of agents increases. Our graph network framework which is adaptable to varying
number of agents and landmarks allows us to transfer learned behavior, and shows both strong
zero-shot generalization as well as ability to quickly improve in new scenarios with very few
gradient updates. We deploy a curriculum over the number of agents, i.e. a policy is trained with
M = 3 agents, then transferred (and further trained) with M = 5 agents, and so on.

This allows us to vastly simplify the multi-agent credit assignment problem which arises
with a large number of agents in cooperative teams, where it is not clear which agent’s behavior
might be leading to a reward or penalty from the environment. In the 3 agent case, the credit
assignment problem is not very difficult - and then the use of a curriculum when scaling to larger
teams makes sure that the agents always have a very strong policy to bootstrap from.
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Chapter 4

Experiments and Results

4.1 Environment Description
We present results on two standard swarm robotics tasks [3, 22]: coverage control and formation
control. These are implemented inside the multi-agent particle environment [17], which is a 2-D
world consisting of agents and landmarks in a continuous space with discrete time.

Observation Space

At each time step t, each agent observes only its own state xti ∈ R4, comprising of 2D position
and velocity. At the beginning of each episode, the agents also observe the positions of all entities
(landmarks) in the environment, which are embedded as virtual nodes in the agent graph and used
as described above.

Action Space

The agent has a discrete action space and chooses from 5 possible actions: (1) no-op, (2) ax = 1,
(3) ax = −1, (4) ay = 1, (5) ay = −1 where ax, ay represent accelerations in x and y dimensions,

respectively, and at =

[
ax
ay

]
is used as input to the agent dynamics as shown below.

Agent Dynamics

Agents can move around in the 2-D space, and we provide a state space representation of the
agent transition dynamics, where the state is denoted by y

yti =

[
p
p′

]t
i

=

[
pt−1 + p′

∆t
γp′t−1 + at∆t

]
where p ∈ R2 is the 2-D position coordinates of the agent and p′ ∈ R2 is the 2-D velocity of
the agent. γ = 0.5 is a damping coefficient used in double integrator robot dynamics models in
the literature [26]. The agent chooses action at at each time step t, and runs the simulation for
∆t = 0.1s. We do not model collision dynamics.
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Figure 4.1: Coverage Control: 10 agents and 10 landmarks. Some landmarks have been covered,
others have an agent on the way to cover them.

4.2 Task Description
We now describe both the coverage and formation control tasks.

4.2.1 Coverage Control
There are M agents (blue) and M landmarks (grey) in the environment, see Figure 4.1. The ob-
jective is for the agents to deploy themselves in a manner to ensure that each landmark is covered,
i.e. each landmark has at least one agent within a certain distance of it. The size of the environ-
ment is 4×4 unit square, and all the agent and landmark positions are randomly initialized at the
beginning of each episode, so the learned policy does not depend on any particular configuration
of the landmarks. Note that we do not assign particular landmarks to each agent, as is the
standard practice in the swarm robotics literature, but instead let the agents communicate with
each other and develop a consensus about which agent will cover which landmark.

Reward Function

At each time step t, we consider an agent-landmark bipartite graph, where the agents form one set
of nodes A and the landmarks for the other set of nodes L. There are weighted edges from every
node inA→ L, with edge weights being specified by the L2 distance. We then find the minimum
weight matching, which is a set of edges without common vertices such that the combined weight
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of the edges is minimized. Intuitively, this finds the agent closest to each landmark and considers
the distance between this pair, while ensuring that the same agent does not count as being the
closest agent to two different landmarks (i.e., we do not want the same agent to be able to cover
two different landmarks at the same time). We use the Hungarian algorithm [15] for linear sum
assignment to find this minimum weight matching. Finally, we use the negative of the clipped
mean distance of a landmark to its closest agent (as specified by the linear assignment) as a shared
reward function for the team. This incentivizes the team to cooperatively cover all landmarks.

Goal Specification

The task is episodic, and can terminate for one of the following two reasons:
1. Each landmark has at least one agent within a distance of 0.1 units from it, where the

overall size of the environment is 4× 4 unit square. This is a success case.

2. 50 time steps have lapsed since the beginning of the episode without the agents having
completed the task. This is a failure case.

4.2.2 Formation Control

There are M agents (blue) and 1 landmark (grey) in the environment, see Figure 4.2. The objec-
tive is for the agents to deploy themselves into a M -sided regular polygonal formation, with the

Figure 4.2: Formation Control: 10 agents coalescing to form a 10-sided regular polygon around
the landmark.
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landmark at its centre. The size of the environment is 2 × 2 unit square, and all the agent and
landmark positions are randomly initialized at the beginning of each episode. Again, note that we
do not specify any particular orientation to the polygon, or assign agents to specific points along
that polygon - but instead let the agents communicate with each other to spread out uniformly.

Reward Function

The reward provided by the environment to the agents at each timestep is a sum of two terms: a
radial separation reward, and an angular separation reward.

1. Radial Separation: We specify a desired distance (0.5 units) that all agents should be
from the landmark, and provide a clipped negative of the absolute value of the deviation
from that distance as a reward to each agent. This term ensures that all agents are at the
correct distance from the landmark, however it does nothing to spread them out uniformly.

2. Angular Separation: Agents should be spread out at an angle of 2π
N

to create a regular
polygon (N is the number of agents). We penalize the agents for deviating from this angle,
ensuring that they spread out at the appropriate angle. We scale this term by 1

π
so that both

radial and angular separation terms have similar magnitude.

Goal Specification

The task is episodic, and can terminate for one of the following two reasons:
1. Each agent is within ±0.05 units of the target distance from the landmark, AND within
±0.1 radians of the target angular separation. This is a success case.

2. 50 time steps have lapsed since the beginning of the episode without the agents having
completed the task. This is a failure case.

4.3 Experimental Specifications
Network Architecture

1. Embedding dimension H = 128

2. Agent state encoder, q: Single fully-connected layer (FC): R4 → R128, followed by a
rectified linear unit (ReLU) non-linearity

3. Entity state encoder, r: Single FC layer + ReLU, R2 → R128

4. Environment encoder DK , DV , DQ = 128

5. Inter-agent communication DK , DV , DQ = 128 for multi-head attention based communi-
cation with C = 3 hops.

6. Agent state update function, g: Single fully-connected layer (FC) layer R256 → R128

7. Value output head: FC layer + ReLU + FC layer, overall R128 → R1

8. Policy output head: FC layer + ReLU + FC layer, overall R128 → R5

All parameters are initialized using orthogonal initialization [28].
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Hyperparameters

1. For dropout communication, we drop 50% edges which are randomly resampled every 10
timesteps.

2. We restrict communication to a radius of R = 2 units in the coverage control task, where
arena size is 4 × 4, and to R = 1 unit in the formation control task, where arena size is
2× 2.

3. During training, agents collect experience from 32 environments in parallel, all initialized
with different seeds

4. Each evaluation is in a newly initialized environment with different random seeds, follow-
ing best practices for evaluation of reinforcement learning [18].

5. We use the Adam optimizer [12] with learning rate 1e− 4.

6. Future rewards are discounted with γ = 0.99

7. The GAE parameter from Equation 2.1 λ = 0.95

8. Entropy coefficient c2 from Equation 2.5 is 0.01

9. Value loss coefficient c1 from Equation 2.5 is 0.5

10. Gradients were clipped to keep L2 norms below 0.5

11. Each batch of experience was used for 4 PPO updates

12. PPO clipping parameter ε from Equation 2.3 is 0.2

The entropy coefficient and value loss coefficient values were obtained after minimal hyperpa-
rameter tuning on coverage control, while the other values were chosen based on previous work
and publicly available implementations of RL algorithms. Note that we did not need to tweak
any parameters for formation control. [14].

4.4 Results

We evaluate various learning methods on the following metrics:
1. Success Rate (%): In what percentage of episodes does the team achieve its objective?

(Higher is better)

2. Time: How many time steps does the team require to achieve its objective? (Lower is
better)

3. Average Distance: (for coverage control only) what is the average distance of a landmark
to its closest agent?

For evaluation, we pause each training run after 50 update steps and evaluate on 30 episodes in a
newly seeded environment, with each agent performing greedy decentralized action selection.

We present results of our graph network based learning framework on both tasks, with
N = {3, · · · , 10} agents, using the following abbreviations while reporting results with all
3 inter-agent communication functions discussed in Section 3.2: MHA: Multi-Head Attention,
EXP: Exponential Kernel Attention [9], UNIFORM: Uniform Attention [34]. We also present

23



results in 2 communication settings: (1) Unrestricted Communication (UC), where all agents
can communicate with each other, and (2) Restricted Communication (RC), where agents can
only communicate with other agents that are within their radius of communication (R = 1 unit
distance).

4.4.1 Comparisons with previous work

While we could not find previous work on multi-agent reinforcement learning in coverage or for-
mation control and hence do not have previously published results to compare with, we use
publicly available implementations1 to compare with Q-Mix [27], VDN [35], IQL [37] and
MADDPG [17]. These methods rely on access to global state during training (and local state
during execution), instead of inter-agent communication, for emergence of cooperation. Hence,
at first, we restricted each agent to observe other agents only within a certain radius (while the
global state with all agents and landmarks was available during training). However, none of the
methods learn to complete the task (0% success), hence we relaxed the observability to be global
for all agents - after which Q-Mix got to a 20% success rate, with the other methods still unable
to learn to cooperate successfully, see Table 4.1. By contrast, our methods easily outperforms
previously proposed methods even with partial observability and restricted communication. We
emphasize that the invariance of our method to the number of agents allows us to use curriculum
learning and transfer learned policies from 3 to 6 agents, while the previous works use architec-
tures that do not allow such transfer. Hence, in the presented results, with M = 6 agents, our
method has been bootstrapped from the M = 3 case, while the previous works have been trained
from scratch. However, considering the poor performance of those methods in the M = 3 case,
we do not believe this to be significantly affecting the results.

None of the previously proposed methods learned anything on the formation control task, in
the partial observability/restricted communication setting, or with M ≥ 6 agents, hence we do
not report those results in the table.

Table 4.1: Comparisons with previous work on coverage control with M = 3 and M = 6 agents.
Av.Dist. refers to the average distance of a landmark to its closest agent (lower is better).

OBSERV- M = 3 M = 6
METHOD ABILITY COMMS AV. DIST. S% AV. DIST. S%

MADDPG2 FULL N/A 0.59 0 0.56 0
Q-MIX FULL N/A 0.19 20 2.87 0
VDN FULL N/A 0.41 0 0.46 0
IQL FULL N/A 0.351 0 0.529 0

OURS: MHA PARTIAL RC 0.067 91 0.103 55
OURS: EXP PARTIAL RC 0.074 85 0.078 73
OURS: UNIFORM PARTIAL RC 0.082 84 0.11 53

1https://github.com/oxwhirl/pymarl
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4.4.2 Flexibility in message passing

Having established that our proposed method with the shared agent-entity graph and learned
communication clearly outperforms previously proposed MARL algorithms, we now compare
variations of the proposed method. Table 4.2 presents the performance of the 3 different inter-
agent message passing functions in both the restricted and unrestricted communication scenarios,
as well as the coverage and formation control tasks. It is clear that all 3 functions perform very
well, with no function being clearly the best (or worst) in all scenarios.

Using multi-head attention (MHA) for message passing outperforms exponential kernel and
uniform attention, since it gives agents greater selectivity in choosing which neighbors’ messages
to attend to. We note that MHA has a greater advantage in the unrestricted communication set-
tings, where agents are receiving a large number of messages (from all other agents, rather than
only from those within a neighborhood) and hence find the ability to listen selectively more use-
ful, as compared to the restricted communication setting, where agents receive fewer messages,
hence ameliorating the effectiveness of MHA.

Table 4.2: Comparing (1) Multi-Head Attention (MHA), (2) Exponential Kernel Attention
(Exp) and (3) Uniform Attention (Uniform) for inter-agent communications on coverage and
formation control task, with both unrestricted (UC) and restricted (RC) communication, for
M = {3, 5, 6, 10} agents.

TASK M COMMS MHA EXP UNIFORM

S% TIME S% TIME S% TIME

COVERAGE 3 UC 96 24.14 83 29.94 89 26.14
COVERAGE 5 UC 100 18.41 96 23.90 75 33.01
COVERAGE 6 UC 99 20.03 87 26.15 53 41.20
COVERAGE 10 UC 98 19.84 80 29.90 0 50

COVERAGE 3 RC 91 27.15 85 28.44 84 27.8
COVERAGE 5 RC 79 33 78 32.69 74 33.84
COVERAGE 6 RC 55 39.77 73 35.98 53 40.52
COVERAGE 10 RC 0 50 0 50 0 50

FORMATION 3 UC 99 14.21 94 17.98 90 18.63
FORMATION 5 UC 99 16.55 79 26.76 76 28.56
FORMATION 6 UC 99 19.7 79 28.86 77 29.53
FORMATION 10 UC 0 50 61 36.75 33 43.25

FORMATION 3 RC 89 20.74 96 17.38 96 16.49
FORMATION 5 RC 98 17.78 0 50 90 21.35
FORMATION 6 RC 97 20.52 0 50 66 35.55
FORMATION 10 RC 8 47.69 0 50 61 35.13
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Table 4.3: Zero Shot Generalization: What happens when up to two team members are added or
removed from the team? S% is success rate, and R is the average reward received by the agents
at the final step of each evaluation episode. The policies were trained with N agents, and the
2 columns marked N − 1 and N − 2 indicate performance when 1 and 2 agents, respectively,
are removed, while columns marked N + 1, N + 2 indicate performance when 1 and 2 agents,
respectively, are added.

TASK COMMS N -2 N -1 N N+1 N+2
S% R S% R S% R S% R S% R

COVERAGE UC 99 -0.57 97 -0.52 96 -0.47 78 -0.36 39 -0.29
COVERAGE RC 43 -0.839 60 -0.629 79 -0.59 29 -0.46 6 -0.48

FORMATION UC 0 -0.34 0 -0.26 100 -0.43 0 -0.36 0 -0.47
FORMATION RC 0 -0.33 0 -0.26 97 -0.52 0 -0.36 0 -0.47

4.4.3 Zero-Shot Generalization to Additional Team Members
This subsection looks at what happens when agents are removed or added to the team. Table
4.3 presents results of how policies learned using our framework (using MHA for inter-agent
communication) generalize to scenarios when up to 2 team members are added or removed. The
presented results are with no additional fine-tuning on the new scenario.

In the coverage task we see the agents adapting very well to the removal or addition of team
members, especially in the unrestricted communication case - achieving up to 99% accuracy
after the loss of 2 teammates. In the formation task, while zero-shot transfer success rates are
0%, this is because our evaluation of success is a very strict condition. The reward values show
us that there is significant transfer of learning, and the policies are very quickly able to adapt to
the new scenarios (with only a few gradient updates). We emphasize that this generalization is
a direct result of our proposed learning framework, not a result of having exposed the agent to
such diversity (in the number of agents) during training (which is the usual practice in multi-task
learning).

4.4.4 Robustness to Communication Drops
We now look at the performance of learned policies under conditions where the communications
networks are glitchy. To encourage robustness to such problems, we trained the agents with
dropout communication (Section 3.4.2). In both coverage and formation control, agents trained
with dropout communication remain robust to random packet loss. More interestingly, we also
observed an (unexpected) regularization effect, where training with communication dropout ac-
tually improved learning to be better than in the case with perfect communication! This can
be seen in Table 4.4, where the success rate of formation control with M = 10 agents, in both
unrestricted and restricted communication settings, goes from low single-digit success rates to
near-perfect (100%) success rates. Both our technique, and this regularization effect, are similar
to dropout [33] used for reducing overfitting in deep neural networks.
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Table 4.4: Regularization effects of communication dropout

TASK M COMMS DROPOUT SUCCESS % TIME

FORMATION 10 UC NO 0 50
FORMATION 10 UC YES 97 22.85

FORMATION 10 RC NO 8 47.69
FORMATION 10 RC YES 100 20.95
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Chapter 5

Conclusion

This thesis presented a new method for cooperative multi-agent reinforcement learning. We pro-
pose embedding the agents and environmental entities into a shared agent-entity graph, which
allows the agents to communicate with each other and selectively focus on aspects of the envi-
ronment salient to them. We propose the use of multi-head attention for communication between
these agents, and our state of the art results on swarm coverage and formation control tasks for
swarms in a fully decentralized execution framework show that our method easily outperforms
previous work in this domain, learning cooperative behavior with teams of up to 10 agents. We
also show strong zero-shot generalization (without any fine-tuning) of the learned behavior poli-
cies to scenarios with more and fewer agents, which indicates robustness to addition or removal
of agents. Additionally, introducing dropout communication during training allows the learned
behavior to be robust to communication glitches and random packet loss, a common occurrence
for real-world communication networks. Surprisingly, dropout communication also acts as a
regularizer for learning, with policies trained using it outperforming policies trained with perfect
communication.

Future Work
We identify the following areas of immediate interest for future exploration:

1. Investigate robustness to measurement and control noise: We have assumed perfect ob-
servability and controls without any noise, an assumption which will almost certainly be
violated in the real world. Investigating the robustness of the methods to both measurement
and control noise would be valuable.

2. Have agents with specialized roles: In this work, all the agents were homogeneous and
entirely interchangeable, which resulted in the agents sharing policy and value head pa-
rameters. However, each agent’s policy and value network can be independent in a sce-
nario where each agent is unique and heterogeneous. A likely scenario is that agents have
specific roles, for e.g., medic, firefighter and police (in a fire response scenario), and all the
agents in a particular role share policy and value networks, since they would be expected
to behave interchangeably, which desirable behavior results directly from sharing parame-
ters. Exploring the emergence of cooperative behavior in such heterogeneous teams is of
great interest to the community.
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3. Investigate the use of meta-learning to improve zero shot generalization: Our results on
zero-shot generalization to scenarios with additional or fewer teammates are a direct byprod-
uct of the shared agent-entity graph, which is invariant to the number of agents and/or en-
tities in the environment. The use of meta-learning for improved zero-shot generalization
to out of distribution scenarios should be explored.
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