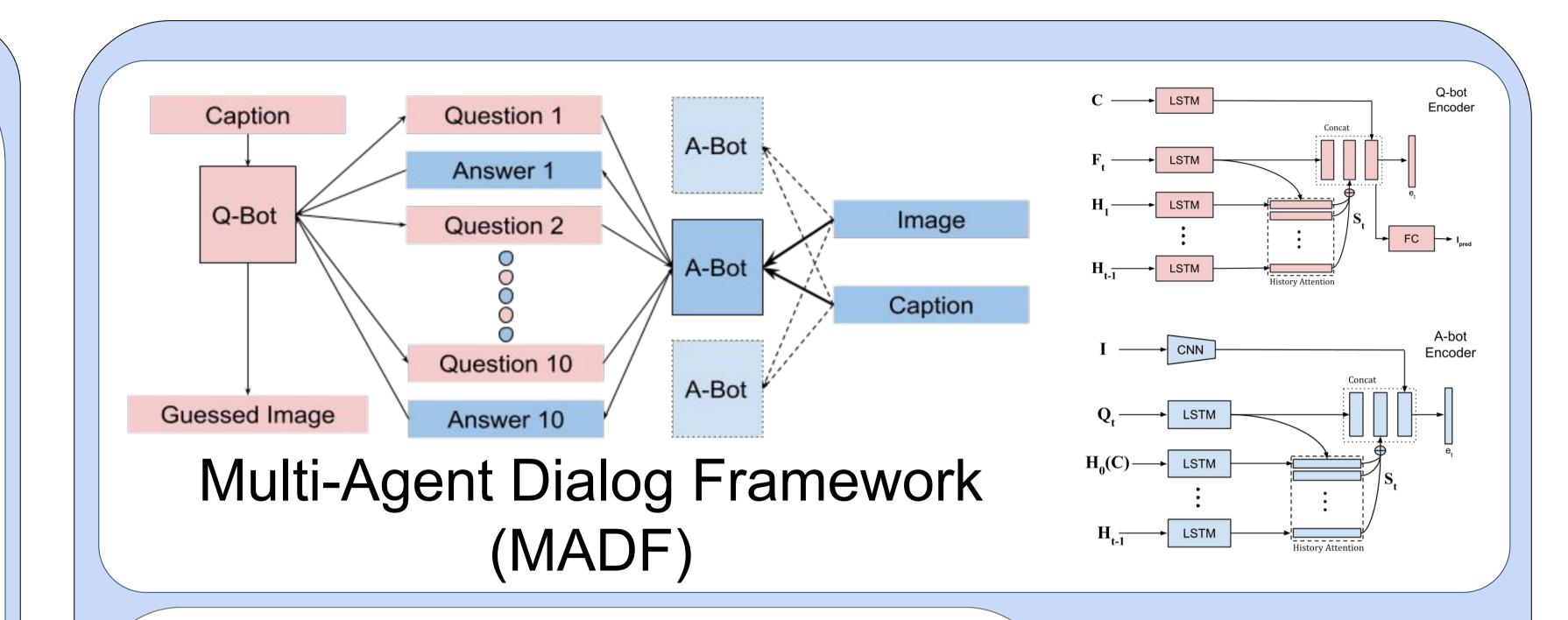

Akshat Agarwal*, Swaminathan G.*, Vasu Sharma*, Katia Sycara


Github Code Paper

Mind Your Language Learning Visually Grounded Dialog in a Multi-Agent Setting

MOTIVATION

• Interpretability of these conversations desirable for transparency, motivating the use of Natural Language (NL) • For AI, exchanging info by communicating in NL is inherently suboptimal • Humans adhere to NL because they have to interact with an entire community, and having a private language for each person would be inefficient

▷ Fact encoding initialized with zeros

Goal-oriented dialog involves agents conversing with each other to achieve a particular goal, like transferring information

• Hence, we propose a multi-agent dialog framework where each agent interacts with and learns from multiple agents, resulting in coherent and interpretable dialog

VISUAL DIALOG TASK

- Formulated as a conversation between two collaborative agents, a Question (Q-) Bot and an Answer (A-) Bot
- We solve the problem using our multi-agent setup where 1 Q-Bot communicates with 1 of multiple A-Bots (or vice-versa) for a batch of training, then chooses another A-Bot and repeats
- Much harder for the agents to deviate from natural language since coming up with a new language for each pair would be inefficient

Alg	orithm 1 Multi-Agent Dialog Framework (MADF)	
1:	procedure MultiBotTrain	
2:	while train_iter < max_train_iter do	Main Training loop over batches
3:	$Qbot \leftarrow random_select (Q_1, Q_2, Q_3, Q_q)$	
4:	$Abot \leftarrow random_select (A_1, A_2, A_3A_a)$	\triangleright Either q or a is equal to 1
5:	$history \leftarrow (0, 0, 0)$	History initialized with zeros

	what color are the skis ? Are there any other people? Is this outdoors? Do you see snow? Is it currently snowing? Is she on a slope or hill? Do you see trees? Do you see trees? Is she wearing gloves? Is she wearing a hat?	A UNK color Not that i can see Yes Yes No I don't think so No i don't think so Yes No Yep yes	
	is the girl close to a race ? 'is she wearing a helmet ? is she wearing a hat ? what color is it ? 'is she wearing goggles ? 'is she wearing goggles ? what color is her skis ? is she wearing a hat ? what color does she have ? and what is the girl wearing ?	no , woman is riding no She is wearing a headband I would say it's black Can't see her face Not sure Dark, hard to tell i would guess No White A white striped long sleeve shirt and blue	
Q-B01 - 1 A-D01)	is there more than 1 skier ? oh how many UNK do you see ? is the person holding a pipe of some sort of basket ? is lady going fast ? how many is there ? is there snow ? how many animals do you see ? is there a lot of snow ?	Yes A few Yes, there is a bowtie I can not tell It's not silver people are in grocery covered by snow covered by snow Of the 1, and a 2 s tons of snow everywhere covered	

Yes 1 is a darker 1

Can't tell

Daytime

About 16

Silver

No snow

No really

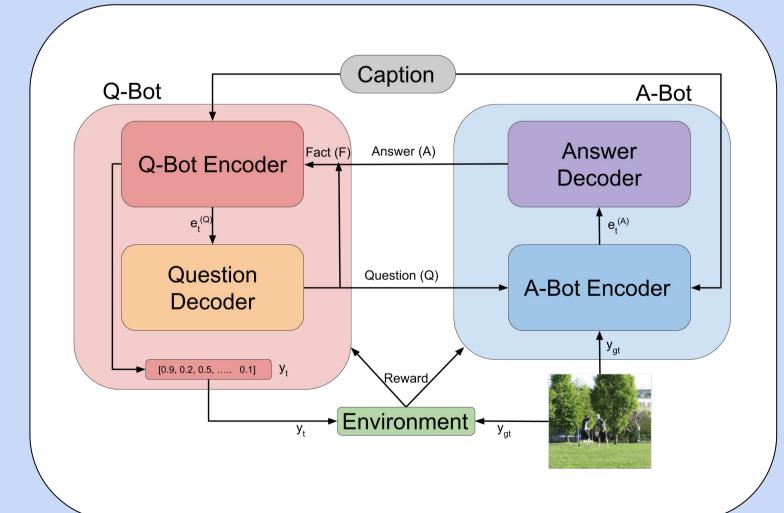
I don't think so

it looks like it is stopped

Just a few skiing out yet

It has a white meat and girl on

Just lady, woman and dog


are they all together ?

is there a lift ?

The little girl is standing with skis on her

- A-Bot given an image and a caption, while Q-Bot is given only a caption - both agents share a common objective, which is for Q-Bot to form an accurate mental representation of the unseen image
- Facilitated by exchange of 10 pairs of questions and answers between the two agents, using a shared common vocabulary

BACKGROUND

First, agents are trained in isolation via supervision for 15 epochs from VisDial dataset, using Max Likelihood Estimation loss wrt ground truth QA - results in repetitive responses

▷ Tracks change in Image Embedding $\Delta image_pred \leftarrow 0$ are there any other people around ? $Qz_1 \leftarrow Ques_enc(Qbot, fact, history, caption)$ is it snowing ? is it a sunny day ' \triangleright Have 10 rounds of dialog **for** t in 1:10 **do** is the woman wearing a dress $ques_t \leftarrow Ques_gen(Qbot, Qz_t)$ what color is it ? 10 is she by herself of snow what color is her jacket ? $Az_t \leftarrow Ans_enc(Abot, fact, history, image, ques_t, caption)$ 11: does it look like a competition is it day or night ? $ans_t \leftarrow Ans_gen(Abot, Az_t)$ 12: is it sunny ' ▷ Fact encoder stores the last dialog pair $fact \leftarrow [ques_t, ans_t]$ 13: ▷ History stores all previous dialog pairs $history \leftarrow concat(history, fact)$ ow old is the woman 14:is she in a ski resort 7 $Qz_t \leftarrow Ques_enc(Qbot, fact, history, caption)$ 15: can you see the sky 7 $image_pred \leftarrow image_regress(Qbot, fact, history, caption)$ 16: what color are the gloves s there snow on the ground $R_t \leftarrow (target_image_image_pred)^2 - \Delta image_pred$ 17: is the photo very clear ? is she wearing a helmet 1 $\Delta image_pred \leftarrow (target_image_image_pred)^2$ 18: is it snowing ? is it sunny 1 end for 19: $\Delta(w_{Qbot}) \leftarrow \frac{1}{10} \sum_{t=1}^{10} \nabla_{\theta_{Qbot}} \left[G_t \log p(ques_t, \theta_{Qbot}) - \Delta image_pred \right]$ 20: $\Delta(w_{Abot}) \leftarrow \frac{1}{10} \sum_{t=1}^{10} G_t \nabla_{\theta_{Abot}} \log p(ans_t, \theta_{Abot})$ 21 $w_{Qbot} \leftarrow w_{Qbot} + \Delta(w_{Qbot})$ ▷ REINFORCE and Image Loss update for Qbot $w_{Abot} \leftarrow w_{Abot} + \Delta(w_{Abot})$ ▷ REINFORCE update for Abot end while 25: end procedure

RESULTS

 $fact \leftarrow (0, 0, ...0)$

	Metric	Ν	Supervised	RL 1Q,1A	RL 1Q,3A	RL 3Q,1A
L	Q-Bot Relevance	8	2.5	2.75	2	2.75
2	Q-Bot Grammar	8	2.25	2.875	2.5	2.375
3	A-Bot Relevance	12	2.5	2.583	2.25	1.67
1	A-Bot Grammar	12	1.92	3.5	1.83	2.25
5	Overall Coherence	20	2.8	3.05	2.3	1.85

Quantitative Metrics (below) and Human Evaluations (above; lower is better; 20 evaluators). RL 1Q,3A refers to dialog system trained with 1 Q-Bot, 3 A-Bots

Overall **Dialog Coherence** of RL-1Q,3A and 3Q,1A systems ranked much better according to humans

Then, they are smoothly transitioned to RL via a curriculum

- 1. Both agents interact with each other and learn by self-play
- 2. Q-Bot observes $\{c,q_1,a_1,\ldots,q_{10},a_{10}\}$, A-Bot also observes I
- 3. Action: Predict words sequentially until a stop token is encountered (or max length reached)
- 4. Reward: Incentivizing information gain from each round of QA, measured using the predicted image embedding y_{t} $r_t(s_t^Q, (q_t, a_t, y_t)) = l(y_{t-1}, y^{gt}) - l(y_t, y^{gt})$
- 5. No motivation to stick to rules and conventions of English language, making the RL optimization problem ill-posed

- Multiple A-Bots interacting with Q- Bot improves relevance, and vice versa
- The grammar improves for both bots in both 1Q,3A and 3Q,1A settings • Having multiple A-Bots to interact with exposes the Q-Bot to diverse dialog, leading to more stable updates with lower bias

	R@10	R@5	R@1	Mean Rank	MRR	Model
We outperform all previous	53.23	48.52	23.55	26.50	0.3735	Answer Prior (Das et al., 2016)
· · ·	68.88	62.85	42.29	17.06	0.5259	MN-QIH-G (Das et al., 2016)
architectures in MRR,	71.55	65.28	44.35	14.23	0.547	HCIAE-G-DIS (Lu et al., 2017)
Maan Dank and D@10	60.48	53.67	N/A	21.13	0.437	Frozen-Q-Multi (Das et al., 2017)
Mean Rank and R@10:	71.74	65.69	46.10	14.4	0.5578	CoAtt-GAN (Wu et al., 2017)
consistently good	72.68	57.67	34.74	5.323	0.610	SL(Ours)
consistently good	72.34	54.69	16.04	7.097	0.459	RL - 1Q,1A(Ours)
responses	72.48	57.47	34.83	5.495	0.601	RL - 1Q,3A(Ours)
	72.61	57.73	33.59	5.56	0.590	RL - 3Q,1A(Ours)
	1	1	1		1	